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Coordinate update

The general framework can be written as

set k ← 0 and initialize x0 ∈ H = H1 ×H2 × · · ·Hm

while not converged to do
select an index ik ∈ [m];
update xk+1

i for i = ik while keeping xk+1
i = xk

i ,∀i 6= ik
k ← k + 1
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Coordinate Update

There is a sequence of coordinate indices i1, i2, · · · , in chosen
according to one of the following rules:

cyclic
cyclic permutation
random
greedy

Then update xk+1
i = xk

i − ηk (xk − Txk )i for i = ik while keeping

xk+1
i = xk

i , ∀i 6= ik
Examples:

Gauss-Seidel iteration
alternating projection for finding a point in the intersection of two
sets.
ADMM for solving monotropic programs
Douglas-Rachford Splitting(DRS) for finding a zero the sum of two
operators.
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Coordinate Descent

In optimization, we solve one of the following subproblems:
(Txk )i = arg minxi f (xk

i− , xi , xk
i+)

(Txk )i = arg minxi f (xk
i− , xi , xk

i+) + 1
2ηk
||xi − xk

i ||2

(Txk )i = arg minxi

〈
∇i f (xk ), xi

〉
+ 1

2ηk
||xi − xk

i ||2

(Txk )i = arg minxi

〈
∇i f diff (xk ), xi

〉
+ f prox

i (xi) + 1
2ηk
||xi − xk

i ||2

For the last setting, letting

f (x) = f diff (x) +
m∑

i=1

f prox
i (xi)
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Coordinate Update
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Parallel Update

Sync-parallel(Jacobi) Update specifies a sequence of index subsets
I1, I2, · · · ⊂ [m], and at each iteration k the coordinates in Ik are

updated in parallel by multiple agents: xk+1
i = xk

i − ηk (xk − Txk )i

Async-parallel Update a set of agents still perform parallel updates,
but synchronization is eliminated or weaked.Hence, each agent
continuously applies update, wich reads x from and writes xi back to
the shared memory. k increases whenever any agent completes an
update. Formally xk+1

i = xk
i − ηk ((I − T )xk−dk )i

The lack of synchronization often results in computation with
out-of-date information.

Yiping Lu (pku) Convex Analysis seminar 2017 8 / 34



Parallel Update

Sync-parallel(Jacobi) Update specifies a sequence of index subsets
I1, I2, · · · ⊂ [m], and at each iteration k the coordinates in Ik are

updated in parallel by multiple agents: xk+1
i = xk

i − ηk (xk − Txk )i

Async-parallel Update a set of agents still perform parallel updates,
but synchronization is eliminated or weaked.Hence, each agent
continuously applies update, wich reads x from and writes xi back to
the shared memory. k increases whenever any agent completes an
update. Formally xk+1

i = xk
i − ηk ((I − T )xk−dk )i

The lack of synchronization often results in computation with
out-of-date information.

Yiping Lu (pku) Convex Analysis seminar 2017 8 / 34



Outline

1 Coordinate Friendly Structure
Coordinate Update Algorithmic Framework
Coordinate Friendly Operator
Composite Coordinate Friendly Operators
Operator Splitting

2 Asynchronous Parallel Iteration
Arbitrary Delay Case

Converge results
True Delays

Yiping Lu (pku) Convex Analysis seminar 2017 9 / 34



Notation

We assume our variable x consist of m coordinates:

x0 ∈ H = H1 ×H2 × · · ·Hm

For simplicity we assume that Hi are finite dimensional real Hilbert
spaces.

Definition
We let m[a→ b] denote the number of basic operations that it takes to
compute the quantity b from the input a
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least square1

Example
Consider the least square problem

min f (x) :=
1
2
||Ax − b||22

Here A ∈ Rp×m,b ∈ Rp

The full update can be written as

Tx := x − η∇f (x) = x − ηAT Ax + ηAT b

For the i−th coordinate:

(Tx)i = (AT A)i,: · x − (AT b)i

Assuming AT A and AT b is already computed

m[x → (Tx)i ] = O(m) = O(
1
m

x → (Tx)i)
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least square2

Example
Consider the least square problem

min f (x) :=
1
2
||Ax − b||22

Here A ∈ Rp×m,b ∈ Rp

The full update can be written as

Tx := x − η∇f (x) = x − ηAT Ax + ηAT b

Suppose we have x ,Tx and need to update Txk+1(For if we have Txk ,
it is easy to get xk+1)

Txk+1 = Txk + xk+1 − xk − η(xk+1
ik
− xk

ik )(AT A):,ik
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least square2

Example
Consider the least square problem

min f (x) :=
1
2
||Ax − b||22

Here A ∈ Rp×m,b ∈ Rp

Suppose we have x ,Tx and need to update Txk+1(For if we have Txk ,
it is easy to get xk+1)

Txk+1 = Txk + xk+1 − xk − η(xk+1
ik
− xk

ik )(AT A):,ik

we have

m[{xk ,Txk , xk+1} → Txk+1] = O(
1
m

m[xk+1 → Txk+1])
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Corrdinate Friendly Operator

Definition
Type1 CF

m[x → (Tx)i ] = O(
1
m

x → (Tx)i)

Type2 CF for any i , x and x+ := (x1, · · · , (Tx)i , · · · , xm) we have

m[{x ,Tx , x+} → Tx+] = O(
1
m

m[x+ → Tx+])
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least square3

Example
Consider the least square problem

min f (x) :=
1
2
||Ax − b||22

Here A ∈ Rp×m,b ∈ Rp

When p << m we should avoid computing AT A, it is cheaper to
compute AT (Ax)

(Txk )ik = xk
ik − η(AT (Axk )− AT b)ik

= xk
ik − η(AT

ik ,:(Axk )− AT
ik ,:b)

That is say we have

m[{xk ,Axk} → {xk+1,Axk+1}] = O(
1
m

m[x → Txk ])
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Corrdinate Friendly Operator

Definition
CF Operator We say that an operator T : H→ H is CF if for any i , x
and x+ := (x1, · · · , (Tx)i , · · · , xm), the following holds

m[{x ,M(x)} → {x+,M(x+)}] = O(
1
m

m[x → Tx ])

Theorem
Type1 and Type2 CF operator is CF operator!
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separable operator

Definition
separable operator
nearly-separable operator
non-separable operator

Remark
Not all nearly-separable operators are Type2 CG operator. Indeed
consider a sparse matrix A ∈ Rm×m whose non-zero entries are only
located in the last column. Let Tx = Ax , then
Tx+ = Tx + (x+

m − xm)A:,m takes m operations. But Tx+ = x+
m A:,m also

takes m operation.
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Example

Example
(diagonal matrix) A = diag(a1,1, · · · ,am,m),T : x → Ax is
separable
Gradient and proximal maps of a separbale
functionf =

∑m
i=1 fi(xi).

projection to a box, indeed (projB(x))i = max(bi ,min(ai , xi))

squared hinge loss function, consider for a, x ∈ Rm

f (x) :=
1
2

(max(0,1− βaT x))2

consider Tx = ∇f (x) = −βmax(0,1− βaT x)a
Let M(x) = aT x , we can know it is a CF operator.
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Combinations of operators

Example
Scalar map pre-composing affine function. Let aj ∈ Rm,bj ∈ R, and
φj : R→ R be differentiable function, j ∈ [p]. Let

f (x) =

p∑
j=1

φj(aT
j x + bj)

Then ∇f is CF

Let T1y = AT y ,T2y := [φ′1(y1), · · · , φ′p(yp)],T3x := Ax + b, where
A = [aT

1 ; aT
2 ; · · · ; aT

p ],b = [b1; b2; · · · ,bp]. Then ∇f = T1 ◦ T2 ◦ T3x and
let M(x) := T3x
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Combinations of operators

Now T1y = AT y ,T2y := [φ′1(y1), · · · , φ′p(yp)],T3x := Ax + b,
∇f = T1 ◦ T2 ◦ T3x and let M(x) := T3x

calculate T2 ◦ T3x from T3x for O(p) operations.
Compute ∇i f (x)(thus x+) from T2 ◦ T3x for O(p) operations.
update the T3x+ by O(p) operations.

Why effecient? T1 Type1 CF, T2 separable and T3 type2, so that
T1 ◦ T2 still Type1 and T2 ◦ T3 CF.
Attention: T2 ◦ T3 is neither CF1 nor CF2.
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Definition

Definition
(Cheap Operator). For a composite operator T = T1 ◦ T2 ◦ · · · ◦ Tp, an
operator Ti : H→ G is cheap if m[x → Tix ] is less than or equal to the
number of remaining coordinate-update operations, in order of
magnitude.

Definition
(Easy-to-maintain Operator). For a composite operator
T = T1 ◦ T2 ◦ · · · ◦ Tp, the operator Tp : H→ G is easy-to maintain, if
for any x , i , x+ satisfying m[{x ,Tpx , x+} → Tpx+] is less than or equal
to the number of remaining coordinate-update operations, in order of
magnitude, or belongs to O( 1

dimG)m[x+ → Tx+]
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Operator Splitting

Definition
A common firmly-nonexpansive operator is the resolvent of a
maximally monotone map T , written as

JA := (I + A)−1

A reflective resolvent is

RA := 2JA − I

Example

proxγf = (I + γ∂f )−1
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Notation and assumptions

We consider a block-structructured optimization problem

min
x∈Rn

F (x) = f (x1, · · · , xm) +
m∑

i=1

ri(xi) (1)

Definition
A point x∗ is called critical point of(1) if 0 ∈ ∇f (x∗) + ∂R(x∗)

Every time we use the proximal gradient to do the update

xk+1
i ← proxηri (x

k
i − η∇i f (x̂k ))

i is choosen random uniformly every time.
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Assumption

Problem(1) has at least one solution, the solution set is denote as
X ∗

∇f is Lipschitz continuous with constant Lf . For each i ∈ [m],
fixing all block coordinates but the i−th one, ∇f (x) and ∇i f (x) are
Lipschitz continuous with xi with constants Lr and Lc , the
condition number is denoted as κ = Lr

Lc

For each k ≥ 1, the reading x̂k is consistent and delayed by jk ,
namely x̂k = xx−jk , and delay follows an identical distribution

Prob(jk ) = t = qt , t = 0,1,2, · · · ,∀k
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Nonconvex case

Theorem
Convergence for the nonconvex smooth case. let {xk}k≥1 be
generated from the algorithm. Assume

T := E[jk ] <∞

If the stepsize is take as 0 < η < 1/Lc
1+2κT/

√
m , then

lim
k→∞

E||∇f (xk )|| = 0

and any limit point of {xk}k≥1 is almost surely a critical point.
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Continuous-time Analysis

Let t be time in this section, consider the ODE

ẋ(t) = −η∇f (x̂(t))

If there is no delay, easily set x̂(t) = x(t), the ODE describe a gradient
flow, which monotonically decreases f (x(t)) for
d
dt f (x(t)) = 〈∇f (x(t)), ẋ(t)〉 = −1

η ||ẋ(t)||22 Instead, we allow delays and
impose the bound c > 0 on the delays:

||x̂(t)− x(t)||2 ≤
∫ t

t−c
||ẋ(s)||2ds
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||ẋ(s)||2ds

Yiping Lu (pku) Convex Analysis seminar 2017 30 / 34



Continuous-time Analysis

Let t be time in this section, consider the ODE

ẋ(t) = −η∇f (x̂(t))

We lose monotonicity

Proof.

d
dt

f (x(t)) = 〈∇f (x̂(t)), ẋ(t)〉+ 〈∇f (x(t))−∇f (x̂(t)), ẋ(t)〉

≤ −1
η
||ẋ(t)||22 + L||x(t)− x̂(t)||2 · ||ẋ(t)||2

≤ − 1
2η
||ẋ(t)||22 +

ηcL2

2

∫ t

t−c
||ẋ(s)||22ds
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Continuous-time Analysis

Let t be time in this section, consider the ODE

ẋ(t) = −η∇f (x̂(t))

We design an Energy function with both f and a weighted total
keinetic term, where γ > 0.

ξ(t) = f (x(t)) + γ

∫ t

t−c
(s − (t − c))||ẋ(s)||22ds (2)

ξ(t) has the time derivative

ξ̇(t) =
d
dt

f (x(t)) + γc||x(t)||22 − γ
∫ t

t−c
||ẋ(s)||22ds

≤ −(
1
η
− γ)||ẋ(t)||22 − (γ − ncL2

2
)

∫ t

t−c
||ẋ(s)||22ds
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Discrete Analysis

We can define the Lyapunov function

ξk := f (xk ) +
L
2ε

k−1∑
i=k−τ

(i − (k − τ) + 1)||∆i ||22

The proof is like the one given before

f (xk+1)− f (xk ) ≤ L
2ε
∑k−1

i=k−τ ||∆i ||22 + [L(τε+1)
2 − L

γ ]||∆k ||22
ξk − ξk+1 ≥ 1

2( 1
γ −

1
2 − τ)L · ||∆k ||22

Theorem
Converge Rate.

lim
k
||∇f (xk )||2 = 0, lim

1≤i≤k
||∇f (xk )||2 = o(1/

√
k)

The same magnitude as standard gradient descent
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