Asynchronous Parallel Iteration

Yiping Lu¹

¹School of Mathmetical Science Peking University

Topics in Modern Information Processing, PKU, 2017

1/34

Outline

- Coordinate Friendly Structure
 - Coordinate Update Algorithmic Framework
 - Coordinate Friendly Operator
 - Composite Coordinate Friendly Operators
 - Operator Splitting
- Asynchronous Parallel Iteration
 - Arbitrary Delay Case
 - Converge results
 - True Delays

Outline

- Coordinate Friendly Structure
 - Coordinate Update Algorithmic Framework
 - Coordinate Friendly Operator
 - Composite Coordinate Friendly Operators
 - Operator Splitting
- Asynchronous Parallel Iteration
 - Arbitrary Delay Case
 - Converge results
 - True Delays

The general framework can be written as

- set $k \leftarrow 0$ and initialize $x^0 \in \mathbb{H} = \mathbb{H}_1 \times \mathbb{H}_2 \times \cdots \mathbb{H}_m$
- while not converged to do
 - select an index $i_k \in [m]$;
 - update x_i^{k+1} for $i = i_k$ while keeping $x_i^{k+1} = x_i^k$, $\forall i \neq i_k$
 - $k \leftarrow k + 1$

There is a sequence of coordinate indices i_1, i_2, \dots, i_n chosen according to one of the following rules:

- cyclic
- cyclic permutation
- random
- greedy

Then update
$$x_i^{k+1} = x_i^k - \eta_k (x^k - Tx_k)_i$$
 for $i = i_k$ while keeping $x_i^{k+1} = x_i^k, \forall i \neq i_k$

- Gauss-Seidel iteration
- alternating projection for finding a point in the intersection of two
- ADMM for solving monotropic programs
- Douglas-Rachford Splitting(DRS) for finding a zero the sum of two

There is a sequence of coordinate indices i_1, i_2, \dots, i_n chosen according to one of the following rules:

- cyclic
- cyclic permutation
- random
- greedy

Then update
$$x_i^{k+1} = x_i^k - \eta_k(x^k - Tx_k)_i$$
 for $i = i_k$ while keeping $x_i^{k+1} = x_i^k, \forall i \neq i_k$

- Gauss-Seidel iteration
 - alternating projection for finding a point in the intersection of two sets.
 - ADMM for solving monotropic programs
 - Douglas-Rachford Splitting(DRS) for finding a zero the sum of two operators.

There is a sequence of coordinate indices i_1, i_2, \dots, i_n chosen according to one of the following rules:

- cyclic
- cyclic permutation
- random
- greedy

Then update
$$x_i^{k+1} = x_i^k - \eta_k(x^k - Tx_k)_i$$
 for $i = i_k$ while keeping $x_i^{k+1} = x_i^k, \forall i \neq i_k$

Examples:

- Gauss-Seidel iteration
- alternating projection for finding a point in the intersection of two sets.
- ADMM for solving monotropic programs
- Douglas-Rachford Splitting(DRS) for finding a zero the sum of two operators.

In optimization, we solve one of the following subproblems:

- $(Tx^k)_i = \arg\min_{x_i} f(x_{i_-}^k, x_i, x_{i_+}^k)$
- $(Tx^k)_i = \arg\min_{x_i} f(x_{i-}^k, x_i, x_{i+}^k) + \frac{1}{2\eta_k} ||x_i x_i^k||^2$
- $\bullet \ (\mathit{T} x^k)_i = \arg\min_{x_i} \left\langle \nabla_i f(x^k), x_i \right\rangle + \tfrac{1}{2\eta_k} ||x_i x_i^k||^2$
- $(Tx^k)_i = \arg\min_{x_i} \left\langle \nabla_i f^{diff}(x^k), x_i \right\rangle + f_i^{prox}(x_i) + \frac{1}{2\eta_k} ||x_i x_i^k||^2$

For the last setting, letting

$$f(x) = f^{diff}(x) + \sum_{i=1}^{m} f_i^{prox}(x_i)$$

In optimization, we solve one of the following subproblems:

$$\bullet \ (Tx^k)_i = \operatorname{arg\,min}_{x_i} f(x_{i_-}^k, x_i, x_{i_+}^k)$$

$$\bullet$$
 $(Tx^k)_i = \arg\min_{x_i} f(x_{i_-}^k, x_i, x_{i_+}^k) + \frac{1}{2\eta_k} ||x_i - x_i^k||^2$

•
$$(Tx^k)_i = \arg\min_{x_i} \langle \nabla_i f(x^k), x_i \rangle + \frac{1}{2\eta_k} ||x_i - x_i^k||^2$$

•
$$(Tx^k)_i = \arg\min_{x_i} \left\langle \nabla_i f^{diff}(x^k), x_i \right\rangle + f_i^{prox}(x_i) + \frac{1}{2\eta_k} ||x_i - x_i^k||^2$$

For the last setting, letting

$$f(x) = f^{diff}(x) + \sum_{i=1}^{m} f_i^{prox}(x_i)$$

6/34

In optimization, we solve one of the following subproblems:

- $\bullet \ (Tx^k)_i = \operatorname{arg\,min}_{x_i} f(x_{i_-}^k, x_i, x_{i_+}^k)$
- $\bullet \ (Tx^k)_i = \arg\min_{x_i} f(x_{i_-}^k, x_i, x_{i_+}^k) + \frac{1}{2\eta_k} ||x_i x_i^k||^2$
- ullet $(Tx^k)_i = \mathop{\mathsf{arg\,min}}_{x_i} \left\langle
 abla_i f(x^k), x_i
 ight
 angle + rac{1}{2\eta_k} ||x_i x_i^k||^2$
- $(Tx^k)_i = \arg\min_{x_i} \left\langle \nabla_i f^{diff}(x^k), x_i \right\rangle + f_i^{prox}(x_i) + \frac{1}{2\eta_k} ||x_i x_i^k||^2$

$$f(x) = f^{diff}(x) + \sum_{i=1}^{m} f_i^{prox}(x_i)$$

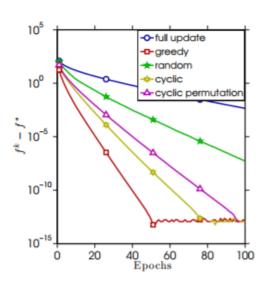
6/34

In optimization, we solve one of the following subproblems:

- $\bullet \ (Tx^k)_i = \operatorname{arg\,min}_{x_i} f(x_{i_-}^k, x_i, x_{i_+}^k)$
- $\bullet \ (\mathit{T} x^k)_i = \mathop{\mathsf{arg\,min}}_{x_i} \left\langle \nabla_i f(x^k), x_i \right\rangle + \tfrac{1}{2\eta_k} ||x_i x_i^k||^2$
- $\bullet \ (\mathit{Tx}^k)_i = \arg\min_{x_i} \left\langle \nabla_i f^{diff}(x^k), x_i \right\rangle + f_i^{prox}(x_i) + \tfrac{1}{2\eta_k} ||x_i x_i^k||^2$

For the last setting, letting

$$f(x) = f^{diff}(x) + \sum_{i=1}^{m} f_i^{prox}(x_i)$$



Parallel Update

Sync-parallel(Jacobi) Update specifies a sequence of index subsets $\mathbb{I}_1, \mathbb{I}_2, \dots \subset [m]$, and at each iteration k the coordinates in \mathbb{I}_k are updated in parallel by multiple agents: $x_i^{k+1} = x_i^k - \eta_k (x^k - Tx^k)_i$

Async-parallel Update a set of agents still perform parallel updates, but synchronization is eliminated or weaked. Hence, each agent continuously applies update, wich reads x from and writes x_i back to the shared memory. k **increases whenever any agent completes an update.** Formally $x_i^{k+1} = x_i^k - \eta_k((I-T)x^{k-d_k})_i$

The lack of synchronization often results in computation with out-of-date information.

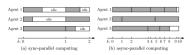


Figure 2: Sync-parallel computing (left) versus async-parallel computing (right). On the left, all the agents must wait at idle (white boxes) until the slowest agent has finished.

seminar 2017

8 / 34

Parallel Update

Sync-parallel(Jacobi) Update specifies a sequence of index subsets $\mathbb{I}_1, \mathbb{I}_2, \dots \subset [m]$, and at each iteration k the coordinates in \mathbb{I}_k are updated in parallel by multiple agents: $x_i^{k+1} = x_i^k - \eta_k(x^k - Tx^k)_i$

Async-parallel Update a set of agents still perform parallel updates, but synchronization is eliminated or weaked. Hence, each agent continuously applies update, wich reads x from and writes x_i back to the shared memory. k **increases whenever any agent completes an**

update. Formally
$$x_i^{k+1} = x_i^k - \eta_k((I-T)x^{k-d_k})_i$$

The lack of synchronization often results in computation with out-of-date information.

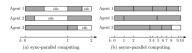


Figure 2: Sync-parallel computing (left) versus async-parallel computing (right). On the left, all the agents must wait at idle (white boxes) until the slowest agent has finished.

Outline

- Coordinate Friendly Structure
 - Coordinate Update Algorithmic Framework
 - Coordinate Friendly Operator
 - Composite Coordinate Friendly Operators
 - Operator Splitting
- Asynchronous Parallel Iteration
 - Arbitrary Delay Case
 - Converge results
 - True Delays

Notation

We assume our variable *x* consist of *m* coordinates:

$$x^0 \in \mathbb{H} = \mathbb{H}_1 \times \mathbb{H}_2 \times \cdots \mathbb{H}_m$$

For simplicity we assume that \mathbb{H}_i are finite dimensional real Hilbert spaces.

Definition

We let $m[a \rightarrow b]$ denote the number of basic operations that it takes to compute the quantity b from the input a

10/34

Example

Consider the least square problem

$$\min f(x) := \frac{1}{2} ||Ax - b||_2^2$$

Here $A \in \mathbb{R}^{p \times m}, b \in \mathbb{R}^p$

The full update can be written as

$$Tx := x - \eta \nabla f(x) = x - \eta A^T A x + \eta A^T b$$

For the *i*—th coordinate:

$$(Tx)_i = (A^T A)_{i,:} \cdot x - (A^T b)_i$$

Assuming $A^T A$ and $A^T b$ is already computed

$$m[x \rightarrow (Tx)_i] = O(m) = O(\frac{1}{m}x \rightarrow (Tx)_i)$$

Example

Consider the least square problem

$$\min f(x) := \frac{1}{2} ||Ax - b||_2^2$$

Here $A \in \mathbb{R}^{p \times m}$, $b \in \mathbb{R}^p$

The full update can be written as

$$Tx := x - \eta \nabla f(x) = x - \eta A^T A x + \eta A^T b$$

For the i-th coordinate:

$$(Tx)_i = (A^TA)_{i,:} \cdot x - (A^Tb)_i$$

Assuming A^TA and A^Tb is already computed

$$m[x \rightarrow (Tx)_i] = O(m) = O(\frac{1}{m}x \rightarrow (Tx)_i)$$

Example

Consider the least square problem

$$\min f(x) := \frac{1}{2} ||Ax - b||_2^2$$

Here $A \in \mathbb{R}^{p \times m}, b \in \mathbb{R}^p$

The full update can be written as

$$Tx := x - \eta \nabla f(x) = x - \eta A^{T} A x + \eta A^{T} b$$

Suppose we have x, Tx and need to update Tx^{k+1} (For if we have Tx^k , it is easy to get x^{k+1})

$$Tx^{k+1} = Tx^k + x^{k+1} - x^k - \eta(x_{i_k}^{k+1} - x_{i_k}^k)(A^TA)_{:,i_k}$$

Example

Consider the least square problem

$$\min f(x) := \frac{1}{2} ||Ax - b||_2^2$$

Here $A \in \mathbb{R}^{p \times m}, b \in \mathbb{R}^p$

The full update can be written as

$$Tx := x - \eta \nabla f(x) = x - \eta A^T A x + \eta A^T b$$

Suppose we have x, Tx and need to update Tx^{k+1} (For if we have Tx^k , it is easy to get x^{k+1})

$$Tx^{k+1} = Tx^k + x^{k+1} - x^k - \eta(x_{i_k}^{k+1} - x_{i_k}^k)(A^TA)_{:,i_k}$$

Example

Consider the least square problem

$$\min f(x) := \frac{1}{2} ||Ax - b||_2^2$$

Here $A \in \mathbb{R}^{p \times m}, b \in \mathbb{R}^p$

Suppose we have x, Tx and need to update Tx^{k+1} (For if we have Tx^k , it is easy to get x^{k+1})

$$Tx^{k+1} = Tx^k + x^{k+1} - x^k - \eta(x_{i_k}^{k+1} - x_{i_k}^k)(A^TA)_{:,i_k}$$

we have

$$m[\{x^k, Tx^k, x^{k+1}\} \to Tx^{k+1}] = O(\frac{1}{m}m[x^{k+1} \to Tx^{k+1}])$$

4 L P 4 B P 4 E P

Corrdinate Friendly Operator

Definition

Type1 CF

$$m[x \to (Tx)_i] = O(\frac{1}{m}x \to (Tx)_i)$$

• Type2 CF for any i, x and $x^+ := (x_1, \cdots, (Tx)_i, \cdots, x_m)$ we have

$$m[\{x, Tx, x^+\} \to Tx^+] = O(\frac{1}{m}m[x^+ \to Tx^+])$$

14/34

Example

Consider the least square problem

$$\min f(x) := \frac{1}{2} ||Ax - b||_2^2$$

Here $A \in \mathbb{R}^{p \times m}, b \in \mathbb{R}^p$

When $p \ll m$ we should avoid computing A^TA , it is cheaper to compute $A^T(Ax)$

$$(Tx^{k})_{i_{k}} = x_{i_{k}}^{k} - \eta(A^{T}(Ax^{k}) - A^{T}b)_{i_{k}}$$

= $x_{i_{k}}^{k} - \eta(A_{i_{k},:}^{T}(Ax^{k}) - A_{i_{k},:}^{T}b)$

That is say we have

$$m[\{x^k, Ax^k\} \to \{x^{k+1}, Ax^{k+1}\}] = O(\frac{1}{m}m[x \to Tx^k])$$

Corrdinate Friendly Operator

Definition

CF Operator We say that an operator $T : \mathbb{H} \to \mathbb{H}$ is **CF** if for any i, x and $x^+ := (x_1, \cdots, (Tx)_i, \cdots, x_m)$, the following holds

$$m[\{x, M(x)\} \to \{x^+, M(x^+)\}] = O(\frac{1}{m}m[x \to Tx])$$

Theorem

Type1 and Type2 CF operator is CF operator!

16/34

separable operator

Definition

- separable operator
- nearly-separable operator
- non-separable operator

Remark

Not all nearly-separable operators are Type2 CG operator. Indeed consider a sparse matrix $A \in \mathbb{R}^{m \times m}$ whose non-zero entries are only located in the last column. Let Tx = Ax, then

 $Tx^+ = Tx + (x_m^+ - x_m)A_{:,m}$ takes m operations. But $Tx^+ = x_m^+ A_{:,m}$ also takes m operation.

17/34

Example

Example

- (diagonal matrix) $A = diag(a_{1,1}, \dots, a_{m,m}), T : x \to Ax$ is separable
- Gradient and proximal maps of a separbale function $f = \sum_{i=1}^{m} f_i(x_i)$.
- projection to a box, indeed $(proj_B(x))_i = \max(b_i, \min(a_i, x_i))$
- squared hinge loss function, consider for $a, x \in \mathbb{R}^m$

$$f(x) := \frac{1}{2}(\max(0, 1 - \beta a^T x))^2$$

consider $Tx = \nabla f(x) = -\beta \max(0, 1 - \beta a^T x)a$ Let $M(x) = a^T x$, we can know it is a CF operator.

18 / 34

Outline

- Coordinate Friendly Structure
 - Coordinate Update Algorithmic Framework
 - Coordinate Friendly Operator
 - Composite Coordinate Friendly Operators
 - Operator Splitting
- Asynchronous Parallel Iteration
 - Arbitrary Delay Case
 - Converge results
 - True Delays

Example

Scalar map pre-composing affine function. Let $a_j \in \mathbb{R}^m, b_j \in \mathbb{R}$, and $\phi_j : \mathbb{R} \to \mathbb{R}$ be differentiable function, $j \in [p]$. Let

$$f(x) = \sum_{j=1}^{p} \phi_j(\mathbf{a}_j^\mathsf{T} x + \mathbf{b}_j)$$

Then ∇f is CF

Let $T_1y = A^Ty$, $T_2y := [\phi_1'(y_1), \cdots, \phi_p'(y_p)]$, $T_3x := Ax + b$, where $A = [a_1^T; a_2^T; \cdots; a_p^T]$, $b = [b_1; b_2; \cdots, b_p]$. Then $\nabla f = T_1 \circ T_2 \circ T_3x$ and let $M(x) := T_3x$

20 / 34

Now
$$T_1y = A^Ty$$
, $T_2y := [\phi_1'(y_1), \cdots, \phi_p'(y_p)]$, $T_3x := Ax + b$, $\nabla f = T_1 \circ T_2 \circ T_3x$ and let $M(x) := T_3x$

- calculate $T_2 \circ T_3 x$ from $T_3 x$ for O(p) operations.
- Compute $\nabla_i f(x)$ (thus x^+) from $T_2 \circ T_3 x$ for O(p) operations.
- update the T_3x^+ by O(p) operations.

Why effecient? T_1 Type1 CF, T_2 separable and T_3 type2, so that $T_1 \circ T_2$ still Type1 and $T_2 \circ T_3$ CF.

Attention: $T_2 \circ T_3$ is neither CF1 nor CF2.

Now
$$T_1y = A^Ty$$
, $T_2y := [\phi_1'(y_1), \dots, \phi_p'(y_p)]$, $T_3x := Ax + b$, $\nabla f = T_1 \circ T_2 \circ T_3x$ and let $M(x) := T_3x$

- calculate $T_2 \circ T_3 x$ from $T_3 x$ for O(p) operations.
- Compute $\nabla_i f(x)$ (thus x^+) from $T_2 \circ T_3 x$ for O(p) operations.
- update the T_3x^+ by O(p) operations.

Why effecient? T_1 Type1 CF, T_2 separable and T_3 type2, so that $T_1 \circ T_2$ still Type1 and $T_2 \circ T_3$ CF.

Attention: $T_2 \circ T_3$ is neither CF1 nor CF2.

Now
$$T_1y = A^Ty$$
, $T_2y := [\phi_1'(y_1), \cdots, \phi_p'(y_p)]$, $T_3x := Ax + b$, $\nabla f = T_1 \circ T_2 \circ T_3x$ and let $M(x) := T_3x$

- calculate $T_2 \circ T_3 x$ from $T_3 x$ for O(p) operations.
- Compute $\nabla_i f(x)$ (thus x^+) from $T_2 \circ T_3 x$ for O(p) operations.
- update the T_3x^+ by O(p) operations.

Why effecient? T_1 Type1 CF, T_2 separable and T_3 type2, so that $T_1 \circ T_2$ still Type1 and $T_2 \circ T_3$ CF.

Attention: $T_2 \circ T_3$ is neither CF1 nor CF2.

Now
$$T_1y = A^Ty$$
, $T_2y := [\phi'_1(y_1), \dots, \phi'_p(y_p)]$, $T_3x := Ax + b$, $\nabla f = T_1 \circ T_2 \circ T_3x$ and let $M(x) := T_3x$

- calculate $T_2 \circ T_3 x$ from $T_3 x$ for O(p) operations.
- Compute $\nabla_i f(x)$ (thus x^+) from $T_2 \circ T_3 x$ for O(p) operations.
- update the T_3x^+ by O(p) operations.

Why effecient? T_1 Type1 CF, T_2 separable and T_3 type2, so that $T_1 \circ T_2$ still Type1 and $T_2 \circ T_3$ CF. **Attention:** $T_2 \circ T_3$ is neither CF1 nor CF2.

Now
$$T_1y = A^Ty$$
, $T_2y := [\phi'_1(y_1), \dots, \phi'_p(y_p)]$, $T_3x := Ax + b$, $\nabla f = T_1 \circ T_2 \circ T_3x$ and let $M(x) := T_3x$

- calculate $T_2 \circ T_3 x$ from $T_3 x$ for O(p) operations.
- Compute $\nabla_i f(x)$ (thus x^+) from $T_2 \circ T_3 x$ for O(p) operations.
- update the T_3x^+ by O(p) operations.

Why effecient? T_1 Type1 CF, T_2 separable and T_3 type2, so that $T_1 \circ T_2$ still Type1 and $T_2 \circ T_3$ CF.

Attention: $T_2 \circ T_3$ is neither CF1 nor CF2.

21 / 34

Definition

Definition

(Cheap Operator). For a composite operator $T = T_1 \circ T_2 \circ \cdots \circ T_p$, an operator $T_i : \mathbb{H} \to \mathbb{G}$ is cheap if $m[x \to T_i x]$ is less than or equal to the number of remaining coordinate-update operations, in order of magnitude.

Definition

(Easy-to-maintain Operator). For a composite operator $T=T_1\circ T_2\circ\cdots\circ T_p$, the operator $T_p:\mathbb{H}\to\mathbb{G}$ is easy-to maintain, if for any x,i,x^+ satisfying $m[\{x,T_px,x^+\}\to T_px^+]$ is less than or equal to the number of remaining coordinate-update operations, in order of magnitude, or belongs to $O(\frac{1}{dim\mathbb{G}})m[x^+\to Tx^+]$

Outline

- Coordinate Friendly Structure
 - Coordinate Update Algorithmic Framework
 - Coordinate Friendly Operator
 - Composite Coordinate Friendly Operators
 - Operator Splitting
- Asynchronous Parallel Iteration
 - Arbitrary Delay Case
 - Converge results
 - True Delays

Operator Splitting

Definition

A common firmly-nonexpansive operator is the resolvent of a maximally monotone map T, written as

$$J_A:=(I+A)^{-1}$$

A reflective resolvent is

$$R_A := 2J_A - I$$

Example

$$prox_{\gamma f} = (I + \gamma \partial f)^{-1}$$

24 / 34

Outline

- Coordinate Friendly Structure
 - Coordinate Update Algorithmic Framework
 - Coordinate Friendly Operator
 - Composite Coordinate Friendly Operators
 - Operator Splitting
- Asynchronous Parallel Iteration
 - Arbitrary Delay Case
 - Converge results
 - True Delays

Notation and assumptions

We consider a block-structructured optimization problem

$$\min_{x\in\mathbb{R}^n} F(x) = f(x_1,\dots,x_m) + \sum_{i=1}^m r_i(x_i)$$
 (1)

Definition

A point x^* is called critical point of(1) if $0 \in \nabla f(x^*) + \partial R(x^*)$

Every time we use the proximal gradient to do the update

$$x_i^{k+1} \leftarrow prox_{\eta r_i}(x_i^k - \eta \nabla_i f(\hat{x}^k))$$

i is choosen random uniformly every time.

26 / 34

Yiping Lu (pku) Convex Analysis seminar 2017

Assumption

- Problem(1) has at least one solution, the solution set is denote as
 X*
- ∇f is Lipschitz continuous with constant L_f . For each $i \in [m]$, fixing all block coordinates but the i-th one, $\nabla f(x)$ and $\nabla_i f(x)$ are Lipschitz continuous with x_i with constants L_r and L_c , the condition number is denoted as $\kappa = \frac{L_r}{L_c}$
- For each $k \ge 1$, the reading \hat{x}^k is consistent and delayed by j_k , namely $\hat{x}^k = x^{x-j_k}$, and delay follows an identical distribution

$$Prob(j_k) = t = q_t, t = 0, 1, 2, \dots, \forall k$$

Yiping Lu (pku) Convex Analysis seminar 2017 27 / 34

Theorem'

Convergence for the nonconvex smooth case. let $\{x^k\}_{k\geq 1}$ be generated from the algorithm. Assume

$$T:=\mathbb{E}[j_k]<\infty$$

If the stepsize is take as $0 < \eta < \frac{1/L_c}{1+2\kappa T/\sqrt{m}}$, then

$$\lim_{k\to\infty}\mathbb{E}||\nabla f(x^k)||=0$$

and any limit point of $\{x^k\}_{k\geq 1}$ is almost surely a critical point.

Yiping Lu (pku) Convex Analysis seminar 2017 28 / 34

Outline

- Coordinate Friendly Structure
 - Coordinate Update Algorithmic Framework
 - Coordinate Friendly Operator
 - Composite Coordinate Friendly Operators
 - Operator Splitting
- Asynchronous Parallel Iteration
 - Arbitrary Delay Case
 - Converge results
 - True Delays

Let *t* be time in this section, consider the ODE

$$\dot{x}(t) = -\eta \nabla f(\hat{x}(t))$$

flow, which monotonically decreases f(x(t)) for $\frac{d}{dt}f(x(t)) = \langle \nabla f(x(t)), \dot{x}(t) \rangle = -\frac{1}{\eta} ||\dot{x}(t)||_2^2$ Instead, we allow delays and impose the bound c > 0 on the delays:

$$||\hat{x}(t) - x(t)||_2 \le \int_{t-c}^t ||\dot{x}(s)||_2 ds$$

30 / 34

Yiping Lu (pku) Convex Analysis seminar 2017

Let t be time in this section, consider the ODE

$$\dot{x}(t) = -\eta \nabla f(\hat{x}(t))$$

If there is no delay, easily set $\hat{x}(t) = x(t)$, the ODE describe a gradient flow, which monotonically decreases f(x(t)) for $\frac{d}{dt}f(x(t)) = \sqrt{\nabla}f(x(t)) \cdot \dot{x}(t) = -\frac{1}{2}||\dot{x}(t)||^2$ instead, we allow delays and

 $\frac{d}{dt}f(x(t)) = \langle \nabla f(x(t)), \dot{x}(t) \rangle = -\frac{1}{\eta} ||\dot{x}(t)||_2^2$ Instead, we allow delays and impose the bound c > 0 on the delays:

$$||\hat{x}(t) - x(t)||_2 \le \int_{t-c}^t ||\dot{x}(s)||_2 ds$$

Yiping Lu (pku) Convex Analysis seminar 2017 30 / 34

Let *t* be time in this section, consider the ODE

$$\dot{x}(t) = -\eta \nabla f(\hat{x}(t))$$

If there is no delay, easily set $\hat{x}(t)=x(t)$, the ODE describe a gradient flow, which monotonically decreases f(x(t)) for $\frac{d}{dt}f(x(t))=\langle \nabla f(x(t)),\dot{x}(t)\rangle=-\frac{1}{\eta}||\dot{x}(t)||_2^2$ Instead, we allow delays and impose the bound c>0 on the delays:

$$||\hat{x}(t) - x(t)||_2 \le \int_{t-c}^t ||\dot{x}(s)||_2 ds$$

Yiping Lu (pku) Convex Analysis seminar 2017 30 / 34

Let *t* be time in this section, consider the ODE

$$\dot{x}(t) = -\eta \nabla f(\hat{x}(t))$$

We lose monotonicity

Proof.

$$\begin{split} \frac{d}{dt}f(x(t)) &= \langle \nabla f(\hat{x}(t)), \dot{x}(t) \rangle + \langle \nabla f(x(t)) - \nabla f(\hat{x}(t)), \dot{x}(t) \rangle \\ &\leq -\frac{1}{\eta} ||\dot{x}(t)||_2^2 + L||x(t) - \hat{x}(t)||_2 \cdot ||\dot{x}(t)||_2 \\ &\leq -\frac{1}{2\eta} ||\dot{x}(t)||_2^2 + \frac{\eta c L^2}{2} \int_{t-c}^t ||\dot{x}(s)||_2^2 ds \end{split}$$

Yiping Lu (pku) Convex Analysis seminar 2017 31 / 34

Let *t* be time in this section, consider the ODE

$$\dot{x}(t) = -\eta \nabla f(\hat{x}(t))$$

We design an **Energy function** with both f and a weighted total keinetic term, where $\gamma > 0$.

$$\xi(t) = f(x(t)) + \gamma \int_{t-c}^{t} (s - (t-c)) ||\dot{x}(s)||_{2}^{2} ds$$
 (2)

 $\xi(t)$ has the time derivative

$$\begin{split} \dot{\xi}(t) &= \frac{d}{dt} f(x(t)) + \gamma c ||x(t)||_2^2 - \gamma \int_{t-c}^t ||\dot{x}(s)||_2^2 ds \\ &\leq -(\frac{1}{\eta} - \gamma) ||\dot{x}(t)||_2^2 - (\gamma - \frac{ncL^2}{2}) \int_{t-c}^t ||\dot{x}(s)||_2^2 ds \end{split}$$

Yiping Lu (pku) Convex Analysis seminar 2017 32/34

We can define the Lyapunov function

$$\xi_k := f(x^k) + \frac{L}{2\epsilon} \sum_{i=k-\tau}^{k-1} (i - (k-\tau) + 1) ||\Delta^i||_2^2$$

The proof is like the one given before

•
$$f(x^{k+1}) - f(x^k) \le \frac{L}{2\epsilon} \sum_{i=k-\tau}^{k-1} ||\Delta^i||_2^2 + \left[\frac{L(\tau\epsilon+1)}{2} - \frac{L}{\gamma}\right] ||\Delta^k||_2^2$$

•
$$\xi_k - \xi_{k+1} \ge \frac{1}{2} (\frac{1}{\gamma} - \frac{1}{2} - \tau) L \cdot ||\Delta^k||_2^2$$

Theorem

Converge Rate

$$\lim_{k} ||\nabla f(x^{k})||_{2} = 0, \lim_{1 \le i \le k} ||\nabla f(x^{k})||_{2} = o(1/\sqrt{k})$$

The same magnitude as standard gradient descent

Discrete Analysis

We can define the Lyapunov function

$$\xi_k := f(x^k) + \frac{L}{2\epsilon} \sum_{i=k-\tau}^{k-1} (i - (k-\tau) + 1) ||\Delta^i||_2^2$$

The proof is like the one given before

$$\bullet \ f(x^{k+1}) - f(x^k) \le \frac{L}{2\epsilon} \sum_{i=k-\tau}^{k-1} ||\Delta^i||_2^2 + \left[\frac{L(\tau\epsilon+1)}{2} - \frac{L}{\gamma}\right] ||\Delta^k||_2^2$$

•
$$\xi_k - \xi_{k+1} \ge \frac{1}{2} (\frac{1}{\gamma} - \frac{1}{2} - \tau) L \cdot ||\Delta^k||_2^2$$

Theorem

Converge Rate

$$\lim_{k} ||\nabla f(x^{k})||_{2} = 0, \lim_{1 \le i \le k} ||\nabla f(x^{k})||_{2} = o(1/\sqrt{k})$$

The same magnitude as standard gradient descent

Discrete Analysis

We can define the Lyapunov function

$$\xi_k := f(x^k) + \frac{L}{2\epsilon} \sum_{i=k-\tau}^{k-1} (i - (k-\tau) + 1) ||\Delta^i||_2^2$$

The proof is like the one given before

- $\bullet \ \xi_k \xi_{k+1} \ge \frac{1}{2} (\frac{1}{\gamma} \frac{1}{2} \tau) L \cdot ||\Delta^k||_2^2$

Theorem

Converge Rate.

$$\lim_{k} ||\nabla f(x^{k})||_{2} = 0, \lim_{1 \le i \le k} ||\nabla f(x^{k})||_{2} = o(1/\sqrt{k})$$

The same magnitude as standard gradient descent